
Produkt nr. 459500
Zeeman effekt med elektromagnet
"Zeeman-effekten" er oppdelingen av spektrallinjene til atomer innenfor et magnetfelt. Det enkleste er å dele opp en spektrallinje i tre komponenter kalt "normal Zeeman-effekt". I dette eksperimentet blir den normale Zeeman-effekten så vel som den anomale Zeeman-effekten studert ved å bruke en kadmiumspektrallampe som prøve. Kadmiumlampen utsettes for forskjellige magnetiske flukstettheter og oppdelingen av kadmiumlinjene (normal Zeeman-effekt 643,8 nm, rødt lys; uregelmessig Zeeman-effekt 508,6 nm, grønt lys) undersøkes ved hjelp av et Fabry-Perot interferometer. Evalueringen av resultatene fører til en ganske presis verdi for Bohrs magneton.
Tilknyttet eksperiment
Finn ett eksperiment, som er tilknyttet produktet her:
https://www.frederiksen-scientific.dk/Files/Files/PDF/UK/Worksheets/PHYWE/459500_EN_experiment.pdf
Zeeman effect with electromagnet, camera and software
The "Zeeman effect" is the splitting up of the spectral lines of atoms within a magnetic field. The simplest is the splitting up of one spectral line into three components called the "normal Zeeman effect". In this experiment the normal Zeeman effect as well as the anomalous Zeeman effect are studied using a cadmium spectral lamp as a specimen. The cadmium lamp is submitted to different magnetic flux densities and the splitting up of the cadmium lines (normal Zeeman effect 643.8 nm, red light; anomalous Zeeman effect 508,6nm, green light) is investigated using a Fabry-Perot interferometer. The evaluation of the results leads to a fairly precise value for Bohr's magneton.
Benefits
- Experience the essence of the Nobel Prize: Zeeman (1902)
- Normal and anomalous Zeeman effect with one setup
- Electromagnet secures a fine variation of the necessary magnetic field to be calculated or measured
- High precision Fabry-Perot interferometer necessary for good results
- Image analysis by specific PC capture and analysis software
Experiments
- Using the Fabry-Perot interferometer and a selfmade telescope the splitting up of the central line into different lines is measured in wave numbers as a function of the magnetic flux density.
- From the results of point 1. a value for Bohr's magneton is evaluated.
- The light emitted within the direction of the magnetic field is qualitatively investigated.
Learning objectives
- Bohr's atomic model
- Quantisation of energy levels
- Electron spin
- Bohr's magneton
- Interference of electromagnetic waves
- Fabry-Perot interferometer
Software included. Computer not provided.